9 research outputs found

    Preclinical Analysis of JAA-F11, a Specific Anti-Thomsen-Friedenreich Antibody via Immunohistochemistry and In Vivo Imaging.

    Get PDF
    The tumor specificity of JAA-F11, a novel monoclonal antibody specific for the Thomsen-Friedenreich cancer antigen (TF-Ag-alpha linked), has been comprehensively studied by in vitro immunohistochemical (IHC) staining of human tumor and normal tissue microarrays and in vivo biodistribution and imaging by micro-positron emission tomography imaging in breast and lung tumor models in mice. The IHC analysis detailed herein is the comprehensive biological analysis of the tumor specificity of JAA-F11 antibody performed as JAA-F11 is progressing towards preclinical safety testing and clinical trials. Wide tumor reactivity of JAA-F11, relative to the matched mouse IgG3 (control), was observed in 85% of 1269 cases of breast, lung, prostate, colon, bladder, and ovarian cancer. Staining on tissues from breast cancer cases was similar regardless of hormonal or Her2 status, and this is particularly important in finding a target on the currently untargetable triple-negative breast cancer subtype. Humanization of JAA-F11 was recently carried out as explained in a companion paper "Humanization of JAA-F11, a Highly Specific Anti-Thomsen-Friedenreich Pancarcinoma Antibody and In Vitro Efficacy Analysis" (Neoplasia 19: 716-733, 2017), and it was confirmed that humanization did not affect chemical specificity. IHC studies with humanized JAA-F11 showed similar binding to human breast tumor tissues. In vivo imaging and biodistribution studies in a mouse syngeneic breast cancer model and in a mouse-human xenograft lung cancer model with humanized 124I- JAA-F11 construct confirmed in vitro tumor reactivity and specificity. In conclusion, the tumor reactivity of JAA-F11 supports the continued development of JAA-F11 as a targeted cancer therapeutic for multiple cancers, including those with unmet need

    Comparative Effectiveness of Up To Three Lines of Chemotherapy Treatment Plans for Metastatic Colorectal Cancer

    No full text
    Modern chemotherapy agents transformed standard care for metastatic colorectal cancer (mCRC) but raised concerns about the financial burden of the disease. We studied comparative effectiveness of treatment plans that involve up to three lines of therapies and impact of treatment sequencing on health and cost outcomes. We employed a Markov model to represent the dynamically changing health status of mCRC patients and used Monte-Carlo simulation to evaluate various treatment plans consistent with existing guidelines. We calibrated our model by a meta-analysis of published data from an extensive list of clinical trials and measured the effectiveness of each plan in terms of cost per quality-adjusted life year. We examined the sensitivity of our model and results with respect to key parameters in two scenarios serving as base case and worst case for patients’ overall and progression-free survivals. The derived efficient frontiers included seven and five treatment plans in base case and worst case, respectively. The incremental cost-effectiveness ratio (ICER) ranged between 26,260and26,260 and 152,530 when the treatment plans on the efficient frontiers were compared against the least costly efficient plan in the base case, and between 21,256and21,256 and 60,040 in the worst case. All efficient plans were expected to lead to fewer than 2.5 adverse effects and on average successive adverse effects were spaced more than 9 weeks apart from each other in the base case. Based on ICER, all efficient treatment plans exhibit at least 87% chance of being efficient. Sensitivity analyses show that the ICERs were most dependent on drug acquisition cost, distributions of progression-free and overall survivals, and health utilities. We conclude that improvements in health outcomes may come at high incremental costs and are highly dependent in the order treatments are administered
    corecore